PyVBMC: Efficient Bayesian inference in Python

dc.contributor.affiliationUniversity of Helsinki-Acerbi, Luigi
dc.contributor.authorAcerbi, Luigi
dc.date.accessioned2025-04-29T14:00:06Z
dc.date.issued2023-05-24
dc.date.issued2023-05-24
dc.descriptionThis upload archives the v1.0.1 release of PyVBMC, as prepared for submission to the Journal of Open Source Software. PyVBMC is a Python implementation of the Variational Bayesian Monte Carlo (VBMC) algorithm for posterior and model inference for *black-box* computational models. VBMC is an approximate inference method designed for efficient parameter estimation and model assessment when model evaluations are mildly-to-very expensive (e.g., a second or more) and/or noisy.
dc.identifierhttps://doi.org/10.5281/zenodo.7966315
dc.identifier.urihttps://datakatalogi.helsinki.fi/handle/123456789/4620
dc.rights.licensebsd-3-clause
dc.subjectBayesian inference
dc.subjectmachine learning
dc.subjectprobabilistic modeling
dc.subjectcomputational statistics
dc.titlePyVBMC: Efficient Bayesian inference in Python
dc.typesoftware