Data from: The interplay between local ecology, divergent selection and genetic drift in population divergence of a sexually antagonistic female trait

No Thumbnail Available

Restricted Availability

Date

2014-03-07, 2014-03-07

Persistent identifier of the Data Catalogue metadata

Creator/contributor

Editor

Journal title

Journal volume

Publisher

Publication Type

dataset

Peer Review Status

Repositories

Access rights

ISBN

ISSN

Description

Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus and Graphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, while for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data therefore suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism.

Link to original dataset

Keyword (yso)

Publication Series

Journal title

Location of the original dataset